
QuickServer 1.4.6 - Basic Architecture 

Below diagram shows basic architecture of QuickServer framework. The seven spokes on the QuickServer block are the 

seven Service interface methods.  

QuickServerConfig may also be directly used in initService() to configure 

QuickServer. 

 
Note: QSAdminServer is not shown in this diagram, it is a composed QuickServer 

within the main QuickServer. 

Copyright © 2003-2005 QuickServer.org 

Of the eight components/class (application 

specific implementations) connected to 

QuickServer block only one of the (#) class is 

the absolutely necessary class (see below).  

 

ClientHandler implementation object is used 

from the pool of objects for every client 

connected; optional ClientData class is 

associated with the ClientHandler class. 

Threads are picked from pool and used to execute 

any task that ClientHandler needs to 
perform. 

 

ClientHandler object contain references to  

o ClientEventHandler (optional) 
o ClientCommandHandler (#) 

o ClientObjectHandler (#) 

o ClientBinaryHandler (#) 
o ClientWriteHandler (optional) 
o ClientAuthenticationHandler 

(optional)  

o ClientExtendedEventHandler (optional) 
objects created by QuickServer when it starts. 

 
[#] = Any one of these has to be set based on 

default DataMode for input. 

 

QuickServerConfig object is constructed by 
initService() method of the Service 

interface, that QuickServer implements, after 

reading configuration from XML file.  



<<interface>> 

java.lang.Runnable 

QuickServer 

  
setName(name) :  

setPort(port) : 
startServer() :  

initService(Object []): boolean 

ClientHandler 

 
handleClient() :  

getClientData() : ClientData 
sendClientBytes() : 

sendClientMsg () : 
sendClientObject() :  

getSocket() : Socket 
closeConnection() : 

B
o
r
r
o
w
s
 
a
n
 
o
b
j
e
c
t
s
 
f
o
r
 
e
a
c
h
 

c
l
i
e
n
t
 
c
o
n
n
e
c
t
i
o
n
 
f
r
o
m
 
P
o
o
l
 

<<interface>> 

java.lang.Runnable 

Copyright © 2003-2005 QuickServer.org 

Basic Architecture for v 1.4.6 
 
http://www.quickserver.org 
http://quickserver.sourceforge.net 

<<interface>> 

ClientAuthenticationHandler 
 

askAuthentication() : AuthStatus 

handleAuthentication() : AuthStatus 

ClientAuthenticationHandler 

Implementation Class 

<<interface>> 

ClientData, PoolableObject 

ClientData 

Implementation Class 

<<interface>> 

ClientCommandHandler 

ClientCommandHanlder 

Implementation Class 

<<interface>> 

ClientObjectHandler 

ClientObjectHanlder 

Implementation Class 

<<interface>> 

Service 

<<interface>> 

ClientBinaryHandler 

ClientBinaryHandler 

Implementation Class 

<<interface>> 

ClientWriteHandler 

ClientWriteHandler 

Implementation Class 

<<interface>> 

ClientEventHandler 

ClientEventHandler 

Implementation Class 

Fr
om

 P
oo

l /
 N

ew
 O

bj
ec

t 

<<interface>> 

ClientExtendedEventHandler 

ClientExtendedEventHandler 

Implementation Class 



 

QuickServer - Threading Model 

For every server instance there will be 

• Only one instance of QuickServer  

• Only one instance of GhostSocketReaper (if timeout is > 0) 

• Only one instance of any/all business classes like ClientEventHandler, ClientCommandHandler, 

ClientObjectHandler, ClientBinaryHandler, ClientWriteHandler, ClientAuthenticationHandler, 

ClientExtendedEventHandler  

• Every client connected will have a ClientHandler implementation associated with it based on the server 

mode 

o Blocking Mode = BlockingClientHandler  

o Non Blocking Mode = NonBlockingClientHandler  

• If ClientData is set, then every ClientHandler will have an instance of ClientData associated with it. The 

ClientData objects will be polled if it implements PoolableObject interface. 

• Based on the server mode, threads will be associated with ClientHandler to execute any processing for 

the client i.e.; 

o In Blocking Mode: A thread is dedicated to every ClientHandler for processing events from the 

client.  

o In Non Blocking Mode: A thread is associated with a ClientHandler only as needed or when data 

is available for processing. 

� When ever any data is available for reading the thread is assigned with READ as 

ClientEvent. 

� If client registers for any write event, then whenever the data can be written a thread is 

assigned with WRITE event for processing any writes. 

 
In the same JVM, there can be more than one instance of QuickServer object that is running based on the 

implementation. A typical QuickServer setup will have one QuickServer object for the main server and another 
for the QSAdminServer. 

Copyright © 2003-2005 QuickServer.org 


